

Development Standards & Practices Used

The project will follow the Agile development methodology. It will have an

iterative development process where requirements and ideas emerge from

collaboration among team members. The engineering standards that apply to this

project will include: consistent syntax for filing naming and code styles, the

utilization of automation where possible to reduce human error, the use of

industry-standard languages and frameworks, Test Driven Development(TDD)

that ensures work collaboration, and the use of S.O.L.I.D architecture principles.

To insure the project is moving forward we will incorporate weekly advisor

meetings, weekly team meetings, the use of slack, and the use of trello for our

communication standards.

Summary of Requirements

● Configure Selenium to interface with/run KBase apps

● User set parameters to initiate automation using Selenium

● Intelligently sample the configuration space from set parameters

● Automate the testing of a certain sample configuration

● Use free and open source tools to reduce cost

● Keep the project itself as open source

Applicable Courses from Iowa State University Curriculum
Com S 227, Com S 228, Com S 309, Com S 327, Cpre 288, Com S 311, SE 319, SE

329, SE 339, ENGL 314, SP CM 212

New Skills/Knowledge acquired that was not taught in courses
● Configuration and use of Selenium testing software

● Use of KBase software

● Automating interactions with KBase software

● Automated JUnit tests through Github

● Maven Checkstyle tests to monitor code syntax

Table of Contents
1 Introduction 4

1.1 Acknowledgement 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 6

1.4 Requirements 6

1.5 Intended Users and Uses 6

1.6 Assumptions and Limitations 7

1.7 Expected End Product and Deliverables 7

2 Project Plan 8

2.1 Task Decomposition 8

2.2 Risks And Risk Management/Mitigation 10

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 11

2.4 Project Timeline/Schedule 12

2.5 Project Tracking Procedures 12

2.6 Personnel Effort Requirements 12

2.7 Other Resource Requirements 13

2.8 Financial Requirements 13

3 Design 7

3.1 Previous Work And Literature 7

3.2 Design Thinking 7

3.3 Proposed Design 7

3.4 Technology Considerations 8

3.5 Design Analysis 8

3.6 Development Process 8

3.7 Design Plan 8

4 Testing 9

4.1 Unit Testing 9

4.2 Interface Testing 9

4.3 Acceptance Testing 9

4.4 Results 9

5 Implementation 10

6 Closing Material 10

6.1 Conclusion 10

6.2 References 10

6.3 Appendices 10

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

1 Introduction

1.1 ACKNOWLEDGEMENT

The team would like to take this opportunity to thank Dr. Myra Cohen for her significant
contributions towards the project and our team's success. Dr. Cohen consistently aided the team's
efforts and provided guidance on how to progress the project. Dr. Cohen is an expert in the field
and without her vision and knowledge of the task at hand the team would not be where they are
today. We want to take this time to thank Dr. Cohen for her efforts and contributions to make our
team and project successful.

1.2 PROBLEM AND PROJECT STATEMENT

1.2.1 Problem Statement

The following quote from Dr. Cohen describes our project's problem statement precisely and
readable by all users: “KBase is a software and data science platform designed to meet the grand
challenge of systems biology: predicting and designing biological function. Many of the tools in this
computational biology ecosystem are configurable, meaning that users can manipulate how the
tool works by changing the various settings. While changing configuration options may improve a
tool’s performance, it can also lead to program failures. The project will build a GUI testing
framework using an automated testing framework such as Selenium, to (1) infer the configuration
model; (2) intelligently sample the configuration space; and (3) automatically test a sample of
configurations.” (Dr. Myra Cohen).

 1.2.2 General Solution approach

The team prototypes a few options for approaching this problem. We landed on using a Selenium
web driver to take requests from a GUI containing all configurable options for the Kbase tests. The
web driver opens up a browser window of the users preferences then automatically fills in the
variables on the Kbase website. Kbase has an exponential combination of potential variable inputs,
giving us a fair amount of testing to run. Due to this the user can run our application once and fill
parameters from a variety of methods for a variety of different tests. Methods include, reading from
a file, randomized, or input by hand. Our program captures the output logs and other relevant
information from failing tests and reports that to the Kbase developers. Doing this will show us the
errors within the Kbase application and allow us to improve it via our testing. This is the purpose of
our project. The number of combinations to test is exponential, so Kbase needs a way to test their
software automatically and report the errors to their developers. The project is important to all
Kbase users. The users we have spoken to have reported errors in the software. With our automated
testing and output log collection we can define what exactly goes wrong to replicate errors to the
Kbase team. Without the data on what went wrong the developers of Kbase are left in the dark and
highly unlikely to replicate and solve the bugs. Leveraging Selenium and automated testing we can
run as many tests as the Kbase system can handle at any given time.

1.2.3 Project Output

At the end of the project we hope to have a running standalone application that can be used and
built off of to test and run FBA analyses on Kbase automatically. Since we only have a year we are
keeping the project fully open source to allow the next team to pick up where we leave off to
continue improving and propelling the automated testing process further and in turn creating a
better Kbase application.

1.3 OPERATIONAL ENVIRONMENT

The end product is expected to be run and available constantly to any Kbase users. The
environment the software application runs in will be the user's own system. Our application will be
downloaded by each Kbase user on their own machines. Our application is purely software
therefore the environment is limited to the user's system. The only hazard that our project could
encounter is no internet connection for the user. Our application needs an internet connection to
operate. This environmental hazard is out primarily out of our control as developers.

1.4 REQUIREMENTS

Functional

● Configure Selenium to interface with KBase apps
● User sets parameters to imitate automation using Selenium
● App will sample the configuration space from set parameters
● Automate the testing of certain sample configurations
● Will collect collect output data from KBase
● Users will be able to randomize inputs
● All inputs from the Kbase GUI will be available

Non-Functional

● Will not noticeable disrupt Kbase traffic flow
● App Gui will have similar layout as Kbase GUI
● App will have a dark mode

Environmental

● Will require a valid and active KBase account
● Will require a internet connection
● Must be run on device which supports Selenium

Economic

● Will be open source and use open source resources

1.5 INTENDED USERS AND USES

The intended users of this application will be those who are already using the KBase GUI.
The purpose of this application is to allow the automation of the KBase GUI, therefore it is expected
that the users of this app will be family with the KBase system and how to use it. No experience
beyond what is already required for KBase operation will be needed in order to operate the app.

The standard use of this app will be that once the user opens it they will enter in their
selenium credentials. The app will then open a web driver and log into selenium on their behalf.
Once logged in the user will be able to select a narrative they wish to automate. Once all inputs
have been configured for the narrative the app will then run the Kbase narrative and collect output
for each set of configurations of the user input.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions

● A user will have a working Kbase account.
● A user will be familiar with Kbase.
● A user will have a working internet connection.

Limitations

● Will not store a user’s Kbase credentials, in order to avoid security risks.
● The product will be open source and not cost users to use.
● The app will not store collected data in a database.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

There will be one deliverable. A stand-alone application that uses Selenium to interface
with the KBase GUI. This app will have an interface GUI that will be similar in presentation as a
KBase narrative GUI, but with the additional options of presetting multiple configurations to run
including randomizing variables as well as auto configuring combinations. The app will run these
configurations through the KBase system on the user’s behalf by opening a web browser of the
users choosing and configuring the KBase narrative based on the configurations input by the user.
Any resultant data the a KBase Produces will be collected by the system and stored as a file.

2 Project Plan

2.1 TASK DECOMPOSITION

KBase Interface Analysis

Analysis of the KBase web application to better-understand the user’s workflow and how the
webpages are built. This will inform how we might interact with and automate the interface.
Particular deliverables from this task may include specification of workflows for interaction with
KBase and identification of particular DOM selectors or risks we could encounter as we automate.

Automation Technology Analysis

Analysis of automation technologies like Selenium to understand which might best-fit our use-case.
This will include considerations like the performance of the tool (can we parallel jobs?), support of
the tool (does it accommodate modern browsers and devices?), and ease-of-use (will interaction
with the framework require programming knowledge?). Deliverables should include identification
of a best-fit automation technology and steps necessary to implement an MVP using the
technology.

User Interface Input Implementation

This project will involve the implementation of a basic Java GUI to accept parameter specification
from our users with validation and potentially advanced range specification. This may be a simple
Java Swing interface with inputs/form-controls curated for the particular KBase application we’re
targeting, which is a Flux Balance Analysis (FBA).

KBase FBA Programming Automation

A Selenium routine must be developed to take the parameters specified through our Java Swing
GUI and automation programming the KBase application (Flux Balance Analysis) with those
parameters. Programming will involve a variety of challenges including accommodating timing of
certain elements (dialogs with fade-outs, for instance) and interaction with a variety of primitive
and rich inputs (checkbox vs. a multiple-selection from a set of media).

KBase FBA Execution and Management Automation

Once programmed, we must automate execution and monitoring of a KBase Flux Balance Analysis
application. This includes verifying the parameter programming is complete, interacting with the
“Run” button, and monitoring the status updates to ensure processing is proceeding successfully
and indicating to the collection step once processing completes.

KBase FBA Collection and Review Automation

After processing completes successfully, we will need to collect results from the KBase Flux Balance
Analysis by identifying and scraping particular elements from the webpage. These may include the
objective value of the simulation and output logs from the job. These values should then be written
to the output data structure of the job to be processed or visualized later.

Job Queue and Runner Implementation

The user may enter parameters with many permutations, so to automate execution we will develop
a job queue to hold those parameter sets. This queue will be asynchronously linked to the GUI and
runners, and will handle delegating jobs to runners and reporting the outcome of a job’s processing
to the GUI. The runners are responsible for executing the Selenium automation for a given job.

User Interface Results Display

Once a job has completed, we will need to report this back to the user. This may include a basic
tabular view, as well as a status view for jobs which have been queued but may not have completed
processing yet. This view may indicate aggregate values as well, with a later task.

User Interface Export Functionality

Once a set of parameters has completed execution, the user should have opportunity to export that
data for further evaluation in a tool like Excel. A set of jobs results should be exportable to the CSV
file format from some GUI interaction, like an export dialog.

Multi-Format Parameter Specification

Parameters may be specified for the application in a variety of formats depending on the
parameter’s type. Explicit values like “true” or “1” maybe be specified, a set of explicit values may be
specified like “1, 4, 10”, a range may be specified like “10-100”, or randomness may be applied either
uniformly or with preference for extremes. THe permutations of these ranges/inputs will need to be
processed into a discrete set of jobs and parameters which can then be queued and processed.

Result Aggregation and Identification

Once a set of jobs and parameters have completed processing, their results can be aggregated and
outliers may be identifier for the user. These could be visualized through the UI or exported to
some other format, like a CSV. We might attempt to programmatically identify outliers in the data
and indicate them to the user.

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

TASK RISK RISK MITIGATION

KBase Interface Analysis 0

Analysis of KBase interface
behavior

0

Automation Technology
Analysis

0.5 - There is a risk that the
automation technology that
we choose to use becomes
deprecated and no longer
supported and/or unstable.

We mitigate this by
choosing a well supported
and mature automation
framework such as
Selenium. We also utilize
Maven to manage our
dependencies to prevent
auto-updating and creating
potential breaking changes
from updates.

User Interface Input
Implementation

1 - There are many UI
frameworks to choose from.
Some may have limitations
on the quality of the UI.

We chose to use Java Swing,
a well-defined and
documented library to
build our UI and have
designed our application in
a way that we could create a
new UI to collect
requirements if necessary.

KBase FBA Programming
Automation

1 - All software is inherently
flawed. Particularly
software written by Daniel
Way and other members of
this team.

We will ruthlessly unit and
regression test the
application to ensure the
highest standard of code
quality. We also have
automated tests that run
continuously during code
contribution to ensure
passing tests.

KBase FBA Collection and
Review Automation

2 - Given that the project is
automating the interaction
of a GUI, there are high
risks that the GUI (which
we do not maintain) will
change over time. This can
break the automation if
elements are not where
they should be.

We have designed our
interactions in a way that a
broken element location
can be changed with the
swap of a single string,
describing the location of
that element. Reducing the
amount of developer work
needed to resolve the issue.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

● Take job input from a user in multiple forms such a custom GUI form, or text files such as
CSV. These input forms should include various input types, such as boolean, float, or
free-form strings. Be able to take two different formats of job input.

● Execute jobs from a user on KBase with multithreaded runners. This allows users to run
multiple jobs at the same time. Be able to run at least five runners at one time.

● Collect output from the jobs and report them back to the user in a format of their
choosing, such as a text/CSV file. Be able to report output to a user in two different
formats.

● Iterate on the project by increasing the amount of KBase applications, inputs, and outputs
that can be created by the project.

● Show runner feedback to the user through the GUI or CLI to display progress of jobs. Be
able to show runner feedback in the console and through the GUI.

2.4 PROJECT TIMELINE/SCHEDULE

Our project development will follow an agile format, and the application’s implementation
will be performed in roughly three phases. The first phase will be “Analysis” and occur during the
first-half of the Fall semester. From August through September, our team will perform analysis on
the KBase system as well as technologies we may use to automate aspects of the system.

Following analysis, we will implement the basic proof-of-concept functionality for
automation KBase through a testing framework, such as Selenium. This basic implementation will
complete by the end of November, which will begin an 8 week hiatus before the Spring semester
begins.

The Spring semester will include more advanced feature implementation that builds atop
the basic functionalities implemented in the Fall semester. These more advanced functionalities
include job queuing, multiple runners, multi-format parameter specification, and result
aggregation and identification. This more advanced implementation continues through the Spring
semester.

Implementation of tasks within these three phases will generally align with iterations in
our Agile development process, where we produce a deliverable for our client/advisor and
determine an appropriate deliverable for the next iteration’s completion. This process allows the
client/advisor to redirect our efforts in a continual feedback process, which should enable us to
produce a solution which aligns well with the client’s use-case. The Gantt chart above details exact
dates for task/iteration implementation.

2.5 PROJECT TRACKING PROCEDURES

We will use git as our version control by storing our code changes. Git will also be used to lay out
issues and teammates can self assign issues according to their strengths. Trello will be used to
efficiently map out which tasks need to be completed, are being worked on, and are completed to
remove ambiguity. Slack will be used to communicate easily between team members any issues,
code snippets, or general help that is needed. We will meet weekly as a team to iron out any issues

throughout the week and give updates on project progress. We also will meet weekly with our
client to gain requirements, demonstrate progress, and ask any questions that would be beneficial
to the growth of the project.

2.6 PERSONNEL EFFORT REQUIREMENTS

This table is a breakdown of the effort requirements for each team member for a standard two week
sprint

Task Number of Hours Explanation

Research 1-2 Topics may require research before
designing a solution

Software/project design 1-2 Solutions should be well thought out before
implementation to promote optimal
solutions

Software development 5-10 Creating software solutions

Software Testing 1-3 Testing software for bugs and to make sure
it performs required task/s

Reviewing team pull requests 1-2 Reviewing team members pull requests to
ensure their code meets team standards

Team meetings 1-2 Meetings with clients to demo product and
obtain future project requirements and
team meetings to assign project
requirements and plan sprints

2.7 OTHER RESOURCE REQUIREMENTS

There are various outside resources that must be used in the completion of our project. Resources
are used to either enable functionality in the project, or aid in the development process of the
project.

We have open-sourced our project on GitHub with an MIT license to open the development to
anyone upon completion of the project. This also serves as a remote repo and collaboration tool for
the team in the development of the project. Developers on the team utilize IntelliJ or Eclipse IDEs

(depending on user preference) to work on the project. The team also utilizes GitHub Actions to
automatically build the project and run automated unit tests and check-styles on code formatting.
The rest of the resource requirements are open-sourced software, available through Maven to
utilize in adding functionality to the application. Dependencies such as Java Swing, and
Maven-Checkstyle.

2.8 FINANCIAL REQUIREMENTS

Total financial resources required to complete the project will equal to $0.00 . The reason the
project development will be free is KBase is an open source project, the technologies and licenses
required to develop are free and or have been provided through being a student of Iowa State.
Selenium, IDE’s we choose, frameworks, version control, and other technologies are free to use and
require no financial resources.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Include relevant background/literature review for the project

– If similar products exist in the market, describe what has already been done

– If you are following previous work, cite that and discuss the advantages/shortcomings

– Note that while you are not expected to “compete” with other existing products / research
groups, you should be able to differentiate your project from what is available

Detail any similar products or research done on this topic previously. Please cite your sources and
include them in your references. All figures must be captioned and referenced in your text.

3.2 DESIGN THINKING

Detail any design thinking driven design “define” aspects that shape your design. Enumerate some
of the other design choices that came up in your design thinking “ideate” phase.

3.3 PROPOSED DESIGN

Include any/all possible methods of approach to solving the problem:

– Discuss what you have done so far – what have you tried/implemented/tested?
– Some discussion of how this design satisfies the functional and non-functional

requirements of the project.
- If any standards are relevant to your project (e.g. IEEE standards, NIST standards) discuss

the applicability of those standards here

- This design description should be in sufficient detail that another team of engineers can
look through it and implement it.

3.4 TECHNOLOGY CONSIDERATIONS

Highlight the strengths, weakness, and trade-offs made in technology available.

Discuss possible solutions and design alternatives

3.5 DESIGN ANALYSIS

– Did your proposed design from 3.3 work? Why or why not?

– What are your observations, thoughts, and ideas to modify or iterate over the design?

3.6 DEVELOPMENT PROCESS

Discuss what development process you are following with a rationale for it – Waterfall, TDD, Agile.
Note that this is not necessarily only for software projects. Development processes are applicable
for all design projects.

3.7 DESIGN PLAN

Describe a design plan with respect to use-cases within the context of requirements, modules in
your design (dependency/concurrency of modules through a module diagram, interfaces,
architectural overview), module constraints tied to requirements.

4 Testing
Testing is an extremely important component of most projects, whether it involves a circuit, a
process, or software.

1. Define the needed types of tests (unit testing for modules, integrity testing for interfaces,
user-study or acceptance testing for functional and non-functional requirements).
2. Define/identify the individual items/units and interfaces to be tested.
3. Define, design, and develop the actual test cases.
4. Determine the anticipated test results for each test case

5. Perform the actual tests.
6. Evaluate the actual test results.
7. Make the necessary changes to the product being tested

8. Perform any necessary retesting
9. Document the entire testing process and its results

Include Functional and Non-Functional Testing, Modeling and Simulations, challenges you have
determined.

4.1 UNIT TESTING

– Discuss any hardware/software units being tested in isolation

4.2 INTERFACE TESTING

– Discuss how the composition of two or more units (interfaces) are to be tested. Enumerate all the
relevant interfaces in your design.

4.3 ACCEPTANCE TESTING
How will you demonstrate that the design requirements, both functional and non-functional are
being met? How would you involve your client in the acceptance testing?

4.4 RESULTS

– List and explain any and all results obtained so far during the testing phase

● Include failures and successes

● Explain what you learned and how you are planning to change the design iteratively as you
progress with your project

● If you are including figures, please include captions and cite it in the text

5 Implementation
Describe any (preliminary) implementation plan for the next semester for your proposed design in
3.3.

6 Closing Material

6.1 CONCLUSION

Summarize the work you have done so far. Briefly re-iterate your goals. Then, re-iterate the best
plan of action (or solution) to achieving your goals and indicate why this surpasses all other
possible solutions tested.

6.2 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE).

6.3 APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar data that does not directly pertain to the problem
but helps support it, include it here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,
Software bugs etc.

