KBase Automation using
Selenium

DEsicN DOCUMENT

SD-May21-26
Dr. Myra Cohen: Product Owner,
Jake Veatch: Developer,
Daniel Way: Developer,
Daulton Leach: Scrum Master,
Caleb Meyer: Developer,
Hunter Hall: Developer,
Sergey Germega: Developer
sdmay21-26@iastate.edu
Team Website

Revised: 11-13-2020

Executive Summary

Development Standards & Practices Used

The project will follow the Agile development methodology. It will have an
iterative development process where requirements and ideas emerge from
collaboration among team members. The engineering standards that apply to this
project will include: consistent syntax for filing naming and code styles, the
utilization of automation where possible to reduce human error, the use of
industry-standard languages and frameworks, Test Driven Development(TDD)
that ensures work collaboration, and the use of S.0.L.I.D architecture principles.
To insure the project is moving forward we will incorporate weekly advisor
meetings, weekly team meetings, the use of slack, and the use of trello for our
communication standards.

Summary of Requirements

Configure Selenium to interface with/run KBase apps

User set parameters to initiate automation using Selenium
Intelligently sample the configuration space from set parameters
Automate the testing of a certain sample configuration

Use free and open source tools to reduce cost

Keep the project itself as open source

Applicable Courses from lowa State University Curriculum

Com S 227, Com S 228, Com S 309, Com S 327, Cpre 288, Com S 311, SE 319, SE
329, SE 339, ENGL 314, SP CM 212

New Skills/Knowledge acquired that was not taught in courses

Configuration and use of Selenium testing software
Use of KBase software

Automating interactions with KBase software
Automated JUnit tests through Github

Maven Checkstyle tests to monitor code syntax

N

Table of Contents

1 Introduction

Acknowledgement

Problem and Project Statement
Operational Environment
Requirements

Intended Users and Uses
Assumptions and Limitations

Expected End Product and Deliverables

Project Plan

2.1 Task Decomposition

2.2 Risks And Risk Management/Mitigation

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
2.4 Project Timeline/Schedule

2.5 Project Tracking Procedures

2.6 Personnel Effort Requirements

2.7 Other Resource Requirements

2.8 Financial Requirements

3 Design

3.1 Previous Work And Literature
Design Thinking

Proposed Design

3.4 Technology Considerations
3.5 Design Analysis
Development Process

Design Plan

4 Testing

Unit Testing

10

11

12

12

13

13

14

14

14

15

15

15

16

16

16

17

17

Interface Testing

Acceptance Testing

Results

5 Implementation
Overview
Fall Progress

6 Closing Material
6.1 Conclusion
6.2 References

6.3 Appendices

List of figures/tables/symbols/definitions

Task Decomposition
Risk Management
Project Timeline
Effort Requirements
Use Case Diagram
Module Description

Sprint Methodology

18

18

18

18

18

19

19

19

20

20

10

12

3

17

17

20

1 Introduction

1.1 ACKNOWLEDGEMENT

The team would like to take this opportunity to thank Dr. Myra Cohen for her significant
contributions towards the project and our team's success. Dr. Cohen consistently aided the team's
efforts and provided guidance on how to progress the project. Dr. Cohen is an expert in the field
and without her vision and knowledge of the task at hand the team would not be where they are
today. We want to take this time to thank Dr. Cohen for her efforts and contributions to make our
team and project successful.

1.2 PROBLEM AND PROJECT STATEMENT

1.2.1 Problem Statement

The Department of Energy’s Knowledgebase (KBase) is a platform used by biologists to predict and
simulate biological functions. KBase is entirely configurable by the user which results in an
exponential number of configurations. Users can control the structure of the simulations they wish
to predict/simulate. While this is very advantageous to the user, this causes many failures in the
program. Our project aims to build a testing framework leveraging selenium to automatically test
KBase configurations. In order to identify program failures, we will need to test all possible outputs
and record the results from those tests. Our project aims to: “build a GUI testing framework using
an automated testing framework such as Selenium, to (1) infer the configuration model; (2)
intelligently sample the configuration space; and (3) automatically test a sample of configurations.”
(Dr. Myra Cohen). Additionally, the KBase interface was built without automation in mind. In
order to find the best biological outcome a user may need to run thousands of tests. Our project
aims to alleviate this and give the KBase users an automated tool that can check hundreds of inputs
at once.

1.2.2 General Solution approach

The team prototypes a few options for approaching this problem. We landed on using a Selenium
web driver to take requests from a GUI containing all configurable options for the KBase tests. The
web driver opens up a browser window of the users preferences then automatically fills in the
variables on the KBase website for the Flux Balance Analysis (Flux Balance Analysis are a simulated
test that replicates and produces data on the growth of an organism in specific conditions). The
user is given a simple GUI with all the configurable variables for a FBA to work with. This interface
passes variables directly to the web driver.KBase has an exponential combination of potential
variable inputs, giving us a fair amount of testing to run. Due to this the user can run our
application once and fill parameters from a variety of methods for a variety of different tests.
Methods include, reading from a file, randomized, or input by hand. Our program captures the
output logs and other relevant information from failing tests and reports that to theKBase
developers. The reason for doing this will show us the errors within the KBase application and
allow the KBase developers to improve their application via our testing. This is the purpose of our
project. The number of combinations to test is exponential, so KBase needs a way to test their
software automatically and report the errors to their developers. The project is important to all
KBase users. The users we have spoken to have reported errors in the software. With our
automated testing and output log collection we can define what exactly goes wrong to replicate
errors to the KBase team to allow them to further enhance their platform for all the biologists who
rely on it.

1.2.3 Project Output

At the end of the project we hope to have a running standalone application that can be used and
built off of to test and run FBA analyses on KBase automatically. Since we only have a year we are
keeping the project fully open source to allow the next team to pick up where we leave off to
continue improving and propelling the automated testing process further and in turn creating a
better KBase application.

1.3 OPERATIONAL ENVIRONMENT

The end product is expected to be run and available constantly to any KBase users. The
environment the software application runs in will be the user's own system. Our application will be
downloaded by each KBase user on their own machines. Our application is purely software
therefore the environment is limited to the user's system. The only hazard that our project could
encounter is no internet connection for the user. Our application needs an internet connection to
operate. This environmental hazard is out primarily out of our control as developers.

1.4 REQUIREMENTS
Functional

Configure Selenium to interface with KBase apps

User sets parameters to imitate automation using Selenium
App will sample the configuration space from set parameters
Automate the testing of certain sample configurations

Will collect collect output data from KBase

Users will be able to randomize inputs

All inputs from the KBase GUI will be available

Non-Functional

e Will not noticeable disrupt KBase traffic flow
e App Gui will have similar layout as KBase GUI
e App will have a dark mode

Environmental

e Will require a valid and active KBase account
e Will require a internet connection
e Must be run on device which supports Selenium

Economic

e Will be open source and use open source resources

1.5 INTENDED USERS AND USES

The intended users of this application will be those who are already using the KBase GUI.
The purpose of this application is to allow the automation of the KBase GUI, therefore it is expected
that the users of this app will be family with the KBase system and how to use it. No experience
beyond what is already required for KBase operation will be needed in order to operate the app.

The standard use of this app will be that once the user opens it they will enter in their
selenium credentials. The app will then open a web driver and log into selenium on their behalf.
Once logged in the user will be able to select a narrative they wish to automate. Once all inputs
have been configured for the narrative the app will then run the KBase narrative and collect output
for each set of configurations of the user input.

1.6 ASSUMPTIONS AND LIMITATIONS
Assumptions

e A user will have a working KBase account.
e A user will be familiar with KBase.
e A user will have a working internet connection.

Limitations

e Will not store a user’s KBase credentials, in order to avoid security risks.
e The product will be open source and not cost users to use.
e The app will not store collected data in a database.

1.7 ExpECTED END PRODUCT AND DELIVERABLES

There will be one deliverable. A stand-alone application that uses Selenium to interface
with the KBase GUI. This app will have an interface GUI that will be similar in presentation as a
KBase narrative GUI, but with the additional options of presetting multiple configurations to run
including randomizing variables as well as auto configuring combinations. The app will run these
configurations through the KBase system on the user’s behalf by opening a web browser of the
users choosing and configuring the KBase narrative based on the configurations input by the user.
Any resultant data that KBase Produces will be collected by the system and stored as a file.

2 Project Plan

2.1 TAsk DECOMPOSITION

2020 2021
Today
Ko v I, - - - ©
Automation

Technalogy _ Aug 10 - 0ot 6
Analysis
User Interface Input - Ot 7 - Ocl 23
KBase PrOgramming Automation _ Oct7-Oct 30
KBase Execution and Management Automation [N +iov 2 - wov 1z
KBase Collection and Review Automation _ Mow 2 - Mow 20

Job Queue and Runner Implementation _ Jan 2% - Feb 26

User Interface Results and Export — Jan 25 - Feb 28

Multi-Format Parameter Specification _ Feb 27 - Apr 16
Result Aggregation and identification _ Mar 28 . Apr 23

KBase Interface Analysis

Analysis of the KBase web application to better-understand the user’s workflow and how the web
pages are built. This will inform how we might interact with and automate the interface. Particular
deliverables from this task may include specification of workflows for interaction with KBase and
identification of particular DOM selectors or risks we could encounter as we automate.

Automation Technology Analysis

Analysis of automation technologies like Selenium to understand which might best-fit our use-case.
This will include considerations like the performance of the tool (can we parallel jobs?), support of
the tool (does it accommodate modern browsers and devices?), and ease-of-use (will interaction
with the framework require programming knowledge?). Deliverables should include identification
of a best-fit automation technology and steps necessary to implement an MVP using the
technology.

User Interface Input Implementation

This project will involve the implementation of a basic Java GUI to accept parameter specification
from our users with validation and potentially advanced range specification. This may be a simple
Java Swing interface with inputs/form-controls curated for the particular KBase application we're
targeting, which is a Flux Balance Analysis (FBA).

KBase FBA Programming Automation

A Selenium routine must be developed to take the parameters specified through our Java Swing
GUI and automation programming the KBase application (Flux Balance Analysis) with those
parameters. Programming will involve a variety of challenges including accommodating timing of
certain elements (dialogs with fade-outs, for instance) and interaction with a variety of primitive
and rich inputs (checkbox vs. a multiple-selection from a set of media).

KBase FBA Execution and Management Automation

Once programmed, we must automate execution and monitoring of a KBase Flux Balance Analysis
application. This includes verifying the parameter programming is complete, interacting with the
“Run” button, and monitoring the status updates to ensure processing is proceeding successfully
and indicating to the collection step once processing completes.

KBase FBA Collection and Review Automation

After processing completes successfully, we will need to collect results from the KBase Flux Balance
Analysis by identifying and scraping particular elements from the webpage. These may include the
objective value of the simulation and output logs from the job. These values should then be written
to the output data structure of the job to be processed or visualized later.

Job Queue and Runner Implementation

The user may enter parameters with many permutations, so to automate execution we will develop
a job queue to hold those parameter sets. This queue will be asynchronously linked to the GUI and
runners, and will handle delegating jobs to runners and reporting the outcome of a job’s processing
to the GUI. The runners are responsible for executing the Selenium automation for a given job.

User Interface Results Display

Once a job has completed, we will need to report this back to the user. This may include a basic
tabular view, as well as a status view for jobs which have been queued but may not have completed
processing yet. This view may indicate aggregate values as well, with a later task.

User Interface Export Functionality

Once a set of parameters has completed execution, the user should have the opportunity to export
that data for further evaluation in a tool like Excel. A set of jobs results should be exportable to the
CSV file format from some GUI interaction, like an export dialog.

Multi-Format Parameter Specification

Parameters may be specified for the application in a variety of formats depending on the
parameter’s type. Explicit values like “true” or “1” maybe be specified, a set of explicit values may be
specified like “1, 4, 10”, a range may be specified like “10-100”, or randomness may be applied either
uniformly or with preference for extremes. THe permutations of these ranges/inputs will need to be

processed into a discrete set of jobs and parameters which can then be queued and processed.

Result Aggregation and Identification

Once a set of jobs and parameters have completed processing, their results can be aggregated and
outliers may be identifier for the user. These could be visualized through the UI or exported to
some other format, like a CSV. We might attempt to programmatically identify outliers in the data

and indicate them to the user.

2.2 Risks AND Risk MANAGEMENT/MITIGATION

Automation Technology
Analysis

automation technology that
we choose to use becomes
deprecated and no longer
supported and/or unstable.

TASK RISK RISK MITIGATION
KBase Interface Analysis °
Analysis of KBase interface °
behavior
0.5 - There is a risk that the | We mitigate this by

choosing a well supported
and mature automation
framework such as
Selenium. We also utilize
Maven to manage our
dependencies to prevent
auto-updating and creating
potential breaking changes
from updates.

User Interface Input

1- There are many Ul
frameworks to choose from.

We chose to use Java Swing,
a well-defined and

Implementation Some may have limitations | documented library to
on the quality of the UI. build our UI and have
designed our application in
a way that we could create a
new Ul to collect
requirements if necessary.
. 1- All software is inherently | We will ruthlessly unit and
KBase FB_A Programming flawed. i regression test tlzle
Automation

application to ensure the
highest standard of code
quality. We also have
automated tests that run
continuously during code
contribution to ensure
passing tests.

KBase FBA Collection and
Review Automation

2 - Given that the project is
automating the interaction
of a GUI, there are high
risks that the GUI (which
we do not maintain) will
change over time. This can
break the automation if

elements are not where
they should be.

We have designed our
interactions in a way that a
broken element location
can be changed with the
swap of a single string,
describing the location of
that element. Reducing the
amount of developer work

needed to resolve the issue.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

e Take job input from a user in multiple forms such a custom GUI form, or text files such as

CSV. These input forms should include various input types, such as boolean, float, or

free-form strings. Be able to take two different formats of job input.

e Execute jobs from a user on KBase with multithreaded runners. This allows users to run

multiple jobs at the same time. Be able to run at least five runners at one time.

e Collect output from the jobs and report them back to the user in a format of their

choosing, such as a text/CSV file. Be able to report output to a user in two different

formats.

e [terate on the project by increasing the amount of KBase applications, inputs, and outputs

that can be created by the project.
e Show runner feedback to the user through the GUI or CLI to display progress of jobs. Be
able to show runner feedback in the console and through the GUI.

2.4 PrROJECT TIMELINE/SCHEDULE

KEBase Interface
Analysis
Automation
Technology
Analysis

Today

User Interface Input - Oct 7 - Ocl 23
KEBase Programming Automation _ Oct 7 - 0ct 30
KBase Execution and Management Automation [N s 2 - Hov 1=

KBase Collection and Review Automation _ Mo 2 - Mow 20

Job Queue and Runner Implementation _ Jan 2% - Feb 26
user Interface Results and Export [oo ox Fen 2o
Multi-Format Parameter Specification _ Feb 27 - Apr 18
Result Aggregation and identification _ har 24 - Apr 23

Our project development will follow an agile format, and the application’s implementation
Fwill be performed in roughly three phases. The first phase will be “Analysis” and occur during the
first-half of the Fall semester. From August through September, our team will perform analysis on
the KBase system as well as technologies we may use to automate aspects of the system.

Following analysis, we will implement the basic proof-of-concept functionality for
automation KBase through a testing framework, such as Selenium. This basic implementation will
complete by the end of November, which will begin an 8 week hiatus before the Spring semester
begins.

The Spring semester will include more advanced feature implementation that builds atop
the basic functionalities implemented in the Fall semester. These more advanced functionalities
include job queuing, multiple runners, multi-format parameter specification, and result
aggregation and identification. This more advanced implementation continues through the Spring
semester.

Implementation of tasks within these three phases will generally align with iterations in
our Agile development process, where we produce a deliverable for our client/advisor and
determine an appropriate deliverable for the next iteration’s completion. This process allows the
client/advisor to redirect our efforts in a continual feedback process, which should enable us to
produce a solution which aligns well with the client’s use-case. The Gantt chart above details exact
dates for task/iteration implementation.

2.5 PROJECT TRACKING PROCEDURES

We will use git as our version control by storing our code changes. Git will also be used to lay out
issues and teammates can self assign issues according to their strengths. Trello will be used to
efficiently map out which tasks need to be completed, are being worked on, and are completed to
remove ambiguity. Slack will be used to communicate easily between team members any issues,
code snippets, or general help that is needed. We will meet weekly as a team to iron out any issues

throughout the week and give updates on project progress. We also will meet weekly with our

client to gain requirements, demonstrate progress, and ask any questions that would be beneficial

to the growth of the project.

2.6 PERSONNEL EFFORT REQUIREMENTS

This table is a breakdown of the effort requirements for each team member for a standard two week

sprint

Task Number of Hours | Explanation

Research 1-2 Topics may require research before
designing a solution

Software/project design 1-2 Solutions should be well thought out before
implementation to promote optimal
solutions

Software development 5-10 Creating software solutions

Software Testing 1-3 Testing software for bugs and to make sure
it performs required task/s

Reviewing team pull requests | 1-5, Reviewing team members pull requests to
ensure their code meets team standards

Team meetings 1-2 Meetings with clients to demo product and

obtain future project requirements and
team meetings to assign project
requirements and plan sprints

2.7 OTHER RESOURCE REQUIREMENTS

There are various outside resources that must be used in the completion of our project. Resources
are used to either enable functionality in the project, or aid in the development process of the

project.

We have open-sourced our project on GitHub with an MIT license to open the development to
anyone upon completion of the project. This also serves as a remote repo and collaboration tool for

the team in the development of the project. Developers on the team utilize Intelli] or Eclipse IDEs

(depending on user preference) to work on the project. The team also utilizes GitHub Actions to
automatically build the project and run automated unit tests and check-styles on code formatting.
The rest of the resource requirements are open-sourced software, available through Maven to
utilize in adding functionality to the application. Dependencies such as Java Swing, and
Maven-Checkstyle.

2.8 FINANCIAL REQUIREMENTS

Total financial resources required to complete the project will equal to $0.00 . The reason the
project development will be free is KBase is an open source project, the technologies and licenses
required to develop are free and or have been provided through being a student of Iowa State.
Selenium, IDE’s we choose, frameworks, version control, and other technologies are free to use and
require no financial resources.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

The interesting thing about our project is the fact that it is using a common testing utility to
embark on something that hasn’t been attempted before on our specific platform. In the end we are
trying to create a platform that allows KBase developers to test an exponentially large combination
of complex inputs automatically. This in itself has never been attempted before. Since the KBase
web application is highly specialized in its own GUI there currently is not a “competing”
product/application available. Something we consider special and challenging about our project is
that we have no previous experiences from other developers/companies to give us a rough idea of
how to attack this problem. We are essentially inventing the wheel. As for relevant background, a
working knowledge of KBase is necessary as well as credentials to operate the KBase application. In
order to learn more about KBase it is necessary to read what KBase is and get familiar with running
Flux Balance Analysis (With an authenticated account). To Familiarize with KBase we referenced

KBases website itself '. Additionally, our implementation of this automatic testing procedure relies
heavily on use of Selenium. This being the case, we all needed to have strong working knowledge of
how to operate Selenium. This can be obtained from Selenium’s web page itself '. Aside from these

two utilities we are developing and prototyping solutions to this project. To gain more insight on
KBase as a whole and what the KBase team is looking for, we have met with a member of the KBase
team. This has allowed us to gather more information to create a better solution. Since this has
never been attempted before, part of the project is determining if this is a feasible solution to the
project. Having a working knowledge of these utilities is the only prerequisite for this project. We
are not able to follow other projects due to the nature of this particular project.

1 See our reference table at the end of the document for more information (Section 6.2)

3.2 DEsIGN THINKING

Our project has a few aspects that are shaping our design. The KBase developers need a stand alone
application to test their advanced algorithms. The Flux Balance Analysis has a wide range of
potential inputs. The inputs range from from simple booleans to floats to lists. Each boolean input
raises the potential combination of inputs by an exponent of 2 meanwhile, the floats increase the
potential combinations by an exponent of the range of tolerated inputs. From this short example
we can see how testing all possible combinations is infeasible. This is the problem we are tasked
with solving. We gained insight on this problem during the empathize step and we have defined
this issue in the define step. This problem statement shapes our applications design. We need a
standalone product that can efficiently test an exponential amount of inputs, this will automatically
run these tests based on user specifications and return a log of the outputs. This is the core
problem we are trying to solve with our product. For our application it was pretty clear cut that
Selenium was the way to go. As a group, we thought about and decided on Selenium as the main
driver of our project. Other design decisions were considering the development module to use for
the project. The only one that made sense to the team to use was Agile development.

3.3 PrOPOSED DESIGN

So far, our team has performed detailed analysis around the KBase Web Interface, and
specifically around the “Narrative” interface which is a derivative of Jupyter notebooks. From the
analysis and consultation with our advisor, we've determined that Selenium is the
most-appropriate tool for our project’s purposes.

As we move into implementation of our KBase Testing Automation project, we’ve
decided-on a modular architecture where the GUI we develop, the Selenium configuration
automation, Selenium data collection automation, and export functionalities are all kept separate.
This is desirable for several reasons which satisfy both functional and non-functional requirements
for the project. First, it is optimal for a distributed team with work being performed in-parallel.
With distinct modules and clearly-defined interfaces between them, we can develop two
interdependent modules without concern for integration problems. Secondly, this architecture
makes unit and integration testing very simple. As mentioned, the interfaces to these modules are
well-defined and can be tested with ease. Lastly, but most importantly, this architecture leaves us
an opportunity to extend the system for other inputs, parameter configurations, and export
formats. This architecture also abides by common software engineering standards by being clearly
laid-out and familiar, so future extension and support can be performed by unfamiliar developers.

More materially, this design involves the following: a GUI module where a Java Swing Ul
lives for interaction with the user to produce jobs, a Job Manager module which handles queueing
and assigning jobs to runners, Runners which handle executing jobs against KBase, and export

modules which handle exporting the final data format from those jobs to some external format, like
a CSv.

3.4 TECHNOLOGY CONSIDERATIONS

A main goal of this project is to keep it open source and let the next generation of inspired
developers pick up where we left off and take the project further. Due to this the project is designed
to work on multiple IDEs (Eclipse, Intellij). Other technologies we take advantage of is Selenium as
it's a core component of our project. Selenium has many strengths being a free, language
independent automation framework. Selenium has plenty of documentation and has been very easy
for the team to pick up and integrate. Selenium does have its drawbacks and trade offs. Selenium
has a high initial cost as well as strong dependencies on third party applications to drive the

software. Selenium Can also make testing a bit of a hassle due to the timing and automation of the
web driving services. All this in consideration we still feel Selenium is the best choice for our
project. To solve some of these issues we need to produce high quality and clean code for our
project. This will help efficiency especially when running exponentially growing amounts of tests.

3.5 DESIGN ANALYSIS

Our proposed design from 3.3 works well because it accommodates the functional and
nonfunctional requirements of this project. It enables us to develop effectively, even in a
distributed team, but also grants us the efficiency of an architecture intended for automation of the
KBase system with complex parameter inputs. So far, the greatest problem for us has been the
variability in KBase’s interface construction. Elements may move, their identifiers may change, and
an unexpected feature change to KBase could render our system broken. We will continue to
investigate creative methods of identifying controls, labels, and features of the KBase application so
our automation is more robust against these sort of unexpected changes.

3.6 DEVELOPMENT PROCESS

The design process we are following is an Agile design process. The team thinks very highly of the
Agile development process. With Bi-weekly sprints we can keep the client in the loop constantly
and allow them to input feedback and ideas quickly and efficiently. We are creating a product for
the KBase developers and users alike. Using Agile development we felt this was the best way to
keep these users in mind and in the loop. Agile development also gives the benefit of allowing us to
change/adjust requirements per the user. If the user wants X and we have Y using Agile
methodology we can easily shift to X. Using Agile we keep our client up to date with the project's
status and gives us an accurate idea of when certain features will be implemented. Due to the
reasons stated above the team believes that an Agile approach is the best one.

3.7 DESIGN PLAN

Following the use case laid out in 1.5. The design plan is to have a single user interface that
a user will interact with. The Interface will take in user input and place it into a job. The interface
will then start a job runner to run the job. A job runner runs a job by looking at the parameters the
job holds and uses the selenium API to perform the appropriate operations on the KBase website.
Once the results are available on KBase the runner collects the results and sends them to a file
manager. The file manager organizes the results and writes them to a file for the user to read later.

This set up satisfies the requirements that “User sets parameters to imitate automation

”

using Selenium”, “Configure Selenium to interface with KBase”,” Automate the testing of certain
sample configurations’, “Will collect output data from KBase”. By separating the job from the job
runners, we can let the user queue up several jobs, while limiting the number of jobs that can run at

the same time. This is to meet the requirement “Will not noticeably disrupt KBase traffic flow”.

—1
Enters Inputs into

User

Our Application

User Interface

Loads Inputs info Staris

% Job

Job Runner : Performs Operafions On
¢ Runs Uses |:5 Selenium API {click, scroll, etc)

prints results in file to be read by the

L #» KBase WebSite

Sends resuls to

File manager

Use Case Diagram

User Interface Interface for user to input parameters and
create jobs

Job Stores parameters

Job Runner Takes the parameters stored in a job and
performs operation on the KBase site using
selenium. Collects results from KBase and
sends them to File Manager

File Manager Organizes Results and writes them to a file

Module Descriptions
4 Testing

4.1 UNIT TESTING

The KBase testing framework we're developing has several distinct modules. These were kept
separate intentionally as part of the architectural design the group worked on early in the project.
In addition to granting us the ability to extend the system later, with new inputs, runners, or
outputs, it has also granted us the ability to test individual units of our application. For instance,
once a job has had its parameters set, it must be handed off to a runner for execution. Our
Selenium runner will move through several phases as it configures the KBase interface, executes the
job, and collects results from the Flux Balance Analysis’s output. These individual steps may be

tested in isolation through unit tests to validate that the correct actions are being performed in
KBase through the Selenium API, and that the output collected from the application’s DOM is
being correctly instantiated into an output data structure for later processing.

4.2 INTERFACE TESTING

We do not do any interface testing for our project. Our interface changes periodically and is
minimalistic so our team has decided that interface testing would not be as beneficial as other
types of testing. In the future, we may do some broad interface testing that is automated by
Selenium.

4.3 ACCEPTANCE TESTING

Our accepting testing is mostly manual performance tests that are performed by our team while
working on the project. This means that each of the team members are responsible for manually
testing the code that they plan to implement to ensure that it works in accordance with project
requirements. In addition, the people who review the pull request of any given team member
should make sure that the code works either by asking the team member who created the pull
request or by manual testing that the code works themselves. Lastly we demo the project every
two weeks to our client so that they can assess the project and determine if it meets their
requirements.

4.4 RESULTS

We have automated unit testing and syntax checking in our repository. So far, it has helped us to
catch test and syntax failures before contributing them to our repository. We can also run unit tests

locally during development to ensure that we are not making breaking changes as we develop.

We have a difficult time testing Selenium itself given that is an interaction layer with a Ul. We have
mocked out Selenium for our unit testing. We are going to continue adding tests as we develop the
code to cover our logic that we are adding to the project.

5 Implementation

5.1 OVERVIEW

The team is utilizing an agile development strategy and development has been in process the entire
semester. From initial meetings between the team and our advisor it was settled that an agile
design process would be the best way to attack this problem. The project required us to test and
prototype some potential solutions and utilizing an agile methodology we could do this efficiently.
Implementation was broken down into multiple smaller teams that worked on components
individually that would later be combined to further progress towards our working prototype. The
teams broke down to work on implementing: GUI that passes parameters to the Selenium web
driver, Web driver programming, output collection, and application set up. The goal for the end of
the fall semester was to have a working prototype of all these components combined together. The

plan for next semester is to polish these features and continue implementing additional features
that the KBase team can leverage.

5.2 Fall Progress

As we stated in the previous section the goal for this semester was to have a working prototype that
our team, advisor, and KBase users could use. To do this we needed to accomplish a number of
tasks that the group divided using Git Issues. The team chose tasks that interested them and we
plugged away working in Sprints of two weeks. Every two weeks the goal was to show a new
feature(s) to keep our client in the loop. The main tasks we needed to accomplish were: Generic
setup, GUI for the user to feed information to the selenium driver, Program the selenium driver to
use those values, Run the FBA with those values, gather output, send output to a file the user can
view for informational purposes. Due to our focus on developing in sprints rather than using other
development methodology we have accomplished all these tasks. At the current state the product is
usable by the client and could be utilized to assist in testing the KBase software. We have a fully
functioning GUI allowing the user to enter the main parameters (excluding a few complicated,
optional ones) which are then passed off to the selenium web driver in the form of a job object.
This job gives all the details the user requested to the driver. The driver then executes the job and
the results are sent as output in a JSON file. We plan to expand this application to include the
complex input parameters, ability to run multiple jobs, extract results of many jobs to a CSV file
and many more additional features to fully flesh out the application. These will be the primary
focus in the Spring semester. Our objective from here is to progress the project as far as possible
and have a fully functioning application that future teams can pick up and take even further for the
benefit of KBase.

6 Closing Material

6.1 CONCLUSION

So far, we have implemented a prototype of our application as a standalone Java executable. We
have a codebase set up to interact, authenticate, program inputs, run jobs, and collect output from
KBase. We can run jobs through the entire perspective of a user.

Moving forward, we are working on making the application parallelizable, faster, easier, and more
configurable for the user. We want to add new parameters to program into a KBase job. We also
have goals to allow users to run jobs in a variable number of concurrent processes.

We are developing in an agile format. This may not be the optimal solution, but that will be
discovered as we continue to develop and iterate on the project. Other solutions that we did review
did not have the portability of a standalone Java application, and we wanted users to be able to run
this on any device they may have.

6.2 REFERENCES

“Welcome to KBase Predictive Biology.” KBase, 6 Aug. 2020, www.kbase.us/.

“Selenium Automates Browsers. That's It!” SeleniumHQ Browser Automation, www.selenium.dev/.

6.3 APPENDICES

Break down of our Agile development process each two week sprint:

User Testing and system testing
Allow the user to test the application to determine if all

iteration, continue testing overall

/'

New/First iteration.
Development Phase Empathize with the user. Learn about the problem at hand
Based on results of the prototyping, begin developing code base around Understand O Leers background, why they need the
the prototype solution. Full team is coding/developing and working Agile Design Methodology solution, What IEEE:QE:ZIE:TSM” be used for.
together to iterate in sprints. 3
¢ Key details F Learning as much as possible about the problem,
Team working in sprinis to release steady iterations, Keep the user Understand our HSE’S needs, Put ourselves in the sores
involved with progress and direction, Review code as a team, Review shoes, Understand what our application must solve fully.
progress in team meetings.

'\ [Define the problem/Requirements (functional and non functional,
economic, environmental, etc.) and ideate
Prototype potential solutions Based on our knowledge of the user we begin to define the
Using our defined requirements the team will siart building problem the user has presented. Allowing us to begin to define
cheap prototypes to test if our proposed solution is viable. In requirements for the project In this stage we will also come up
this stage we are still in constant communicate with the user with potential solutions
and are incorporating their feedback into our new prototypes / Key details:
Key Details Develop ideas for potential zolutions, define project
Develop Cheap prototypes of the solutions, Keep the user requirements (functional, Non-functional, efc), Communicate our
linvolved as much as possible, Determine if the prototype model| ideas/requirements to the user Take feedback from the user to
is the solution we want going forward. Analyze if the prototype expand reguirements/solution ideas.
can/will meet all requirements.

Typical two week sprint methodology

Testing requirements are met Team takes user feedback into
Testing the code base to ensure no bugs make it through to the client consideration and continues iteration in the next phase
Key details L —» Continue system testing within the team.
Full team testing period before client testing/feedback, Team will work Key Details. Binakilests Evorect Completion
through applications use cases, Team will enzure all functional requirements Take user feedback into consideration for next iteration, Add
are met user issuesirequirements issues to the tasks for the next

20

21

