
Automated
Configuration

Testing Framework
for KBase

Team: SDMAY21-26

Client/Advisor: Dr. Myra Cohen

Daulton Leach, Jake Veatch, Daniel Way, Caleb Meyer, Sergey Gernega, Hunter Hall

1

Table of Contents

Project Design…………………………………………………………………………………..3
Design……………………………………………………………………………………3

Problem…………………………………………………………………………3
Solution…………………………………………………………………………3
Intended Users………………………………………………………………...4
System Design………………………………………………………………...4

Project Plan……………………………………………………………………………..5
How the Design Evolved from SE 491……………………………………………..8
Requirements…………………………………………………………………………..8

Functional Requirements……………………………………………………8
Non-functional Requirements………………………………………………9
Environmental Requirements………………………………………………9

Standards Used………………………………………………………………………..9
Engineering Constraints…………………………………………………………….10
Operational Environment……………………………………………………………10
Security Concerns…………………………………………………………………....11

Implementation Details……………………………………………………………………….11
Testing…………………………………………………………………………………………..12

Process…………………………………………………………………………………12
Results………………………………………………………………………………….12

References……………………………………………………………………………………...13

Appendices
Appendix I. Operation Manual………………………………………………………………13
Appendix II. Alternative Versions of the Design…………………………………………16
Appendix III. Other Considerations/What we Learned………………………………….18

2

Project Design

Design:
Problem: KBase is a platform used by biologists to simulate experiments based on a set

of input parameters specified by the user. Those parameters are then run through calculations

to give accurate results on the outcome of the experiments. The Biologists can then view the

results and tailor the experiments virtually to get their desired results. There are numerous

parameters and an exponential amount of combinations that can be executed. This creates a

problem when testing and running simulations. For the biologists, an exponential amount of

tests means running numerous experiments to get their results just right. KBase currently offers

no concurrency or means to read tests from files. This can be taxing as each experiment takes

roughly two minutes to complete. Biologists need a way to run potentially hundreds of

simulations concurrently to become more efficient in their experimenting. The next problem this

presents is directed towards the KBase developers. With an exponential amount of testing

combinations, testing the predictive biology algorithms is not feasible at this point. Without the

ability to run countless simulations concurrently the developers are unable to sufficiently test the

system. A means for gathering output and flagging error producing combinations is needed to

aid the development of KBase.

Solution: Our proposed solution to the above problems is to use a browser automation

tool to automate inputs from the user to send to KBase and lastly outputting the results back to

the user. We utilize Selenium in our project, this tool allows us to use our custom made GUI to

interact with KBase’s interfaces. Our tool provides multiple means for the user to run

experiments concurrently. The user interacts with our GUI/File reader and inputs their test(s).

Selenium inputs the users test into the KBase interface and runs the tests with the desired

inputs. After the execution of KBase’s program, we return the results to the user and flag any

errors that may have occurred. If the user entered multiple tests, then after the output of one we

begin the next job in the queue. Sending jobs concurrently to KBase allows us to solve the

efficiency problem the biologists face. We also solve the problem that the KBase developers

face by collecting output from numerous tests and flagging any errors that occur. This will help

them in testing the KBase application by giving them more code coverage overtime. The

automation of the KBase program will in turn aid both the developers and the biologists who use

it.

Intended Users: As discussed in the previous section, our application has two primary

intended users. The first is biologists who need to run experiments on the KBase platform. It

3

could take hundreds of simulated tests to get the exact results they seek. Our application will

allow the biologists to run hundreds of experiments efficiently. The biologists will be able to

tweak parameters to their liking by running many experiments before taking their experiments to

physical laboratories. The second intended user of our application is the KBase developers. Our

project can run hundreds of input combinations making it very useful for testing. The developers

can test numerous input combinations and each test output will be appended to a file. The

developers can then search for any failing input combinations and replicate these tests in their

debugging. These are our two primary users, but in reality anyone with sufficient KBase

credentials can use our application.

System Design: Below is a block diagram that illustrates our systems design. In this

section we will provide a brief description of our system. KBase has a number of different inputs

including: booleans, floats, and specific strings. We provide the user with the ability to interact

with every input parameter offered by KBase. The user configures the parameters to interact

with using our GUI, a file input, or the command line. These configurations are compiled as jobs.

If more than one job is created we use a queue to store the future jobs. The first job is pulled

from the queue and a runner takes the job. The runner takes the values from the parameters

and hands them off to selenium. Selenium interacts with an instance of KBase and enters the

parameters as specified by the user. The FBA test is run and the results are output back to the

user in the form of a file. This process repeats until the job queue is empty and all the tests have

been completed.

4

Project Plan:

The project was scheduled to be developed over two semesters of a senior design course. The

project was developed in an agile format, with each major feature estimated by the project plan

above. Each major feature is outlined below.

5

- KBase Interface Analysis

Analysis of the KBase web application to better-understand the user’s workflow and how the

web pages are built. This will inform how we might interact with and automate the interface.

Particular deliverables from this task may include specification of workflows for interaction with

KBase and identification of particular DOM selectors or risks we could encounter as we

automate.

- Automation Technology Analysis

Analysis of automation technologies like Selenium to understand which might best-fit our

use-case. This will include considerations like the performance of the tool (can we parallel

jobs?), support of the tool (does it accommodate modern browsers and devices?), and

ease-of-use (will interaction with the framework require programming knowledge?). Deliverables

should include identification of a best-fit automation technology and steps necessary to

implement an MVP using the technology.

- User Interface Input Implementation

This project will involve the implementation of a basic Java GUI to accept parameter

specification from our users with validation and potentially advanced range specification. This

may be a simple Java Swing interface with inputs/form-controls curated for the particular KBase

application we’re targeting, which is a Flux Balance Analysis (FBA)

- KBase FBA Programming Automation

A Selenium routine must be developed to take the parameters specified through our Java Swing

GUI and automation programming the KBase application (Flux Balance Analysis) with those

parameters. Programming will involve a variety of challenges including accommodating timing of

certain elements (dialogs with fade-outs, for instance) and interaction with a variety of primitive

and rich inputs (checkbox vs. a multiple-selection from a set of media).

- KBase FBA Execution and Management Automation

Once programmed, we must automate execution and monitoring of a KBase Flux Balance

Analysis application. This includes verifying the parameter programming is complete, interacting

with the “Run” button, and monitoring the status updates to ensure processing is proceeding

successfully and indicating to the collection step once processing completes.

6

- KBase FBA Collection and Review Automation

After processing completes successfully, we will need to collect results from the KBase Flux

Balance Analysis by identifying and scraping particular elements from the webpage. These may

include the objective value of the simulation and output logs from the job. These values should

then be written to the output data structure of the job to be processed or visualized later.

- Job Queue and Runner Implementation

The user may enter parameters with many permutations, so to automate execution we will

develop a job queue to hold those parameter sets. This queue will be asynchronously linked to

the GUI and runners, and will handle delegating jobs to runners and reporting the outcome of a

job’s processing to the GUI. The runners are responsible for executing the Selenium automation

for a given job.

- User Interface Results Display

Once a job has completed, we will need to report this back to the user. This may include a basic

tabular view, as well as a status view for jobs which have been queued but may not have

completed processing yet. This view may indicate aggregate values as well, with a later task.

- User Interface Export Functionality

Once a set of parameters has completed execution, the user should have the opportunity to

export that data for further evaluation in a tool like Excel. A set of jobs results should be

exportable to the CSV file format from some GUI interaction, like an export dialog.

- Multi-Format Parameter Specification

Parameters may be specified for the application in a variety of formats depending on the

parameter’s type. Explicit values like “true” or “1” maybe be specified, a set of explicit values

may be specified like “1, 4, 10”, a range may be specified like “10-100”, or randomness may be

applied either uniformly or with preference for extremes. THe permutations of these

ranges/inputs will need to be processed into a discrete set of jobs and parameters which can

then be queued and processed.

- Result Aggregation and Identification

7

Once a set of jobs and parameters have completed processing, their results can be aggregated

and outliers may be identifier for the user. These could be visualized through the UI or exported

to some other format, like a CSV. We might attempt to programmatically identify outliers in the

data and indicate them to the user.

How the Design Evolved from SE 491:
Throughout this project, we have maintained close communication with our client and

advisor. This has benefited us tremendously because all parties have had insight into progress

and vision for the project. The design of our project has, in large part, remained unchanged from

SE 491. Our team spent significant time analyzing our problem and designing a solution and

architecture which would best-enable us to address the problem, so the overall architecture of

our project is very similar between SE 491 and 492. As we’ve continued to implement features,

there have been additions to the design from SE 491. For instance, we have moved away from

graphical interfaces and towards more data-driven interfaces, such as reading and exporting to

JSON files. Thanks to the design work from SE 491, our core architecture has supported this

transition. Additionally, we have expanded our graphical interface to include greater input

complexity. An example of this would be the inclusion of randomization for input parameters.

Overall, our project’s architecture remains largely unchanged, though we have expanded it with

greater functionality.

Requirements:
Functional Requirements:

Our project has many functional requirements that we must satisfy for our client. The first

requirement is to be able to configure selenium to interface with KBase apps. The whole

purpose of our project is to automate KBase, so we need some sort of a browser automation

tool to achieve this. We decided to use Selenium to interface with the KBase FBA. From this we

can send data and values to KBase from our application and then return output to the user. The

next requirement is that users can set parameters to automate using Selenium. This

requirement is simply getting values from our program (from the user) and sending those values

to Selenium to input into the KBase FBA. Next, the app should be able to sample the

configuration space from set parameters. Similarly, this requirement states that after those

parameters are sent to KBase we run those set variables in the KBase application. Our next

requirement is to add functionality to collect output data from KBase. This will be useful for both

biologists and KBase developers. If a certain input space causes an error they can easily check

8

that from the output files. This allows our users to check their experiments output to duplicate

them physically and allow developers to be able to trace input combinations that fail. An

additional requirement we have is to allow users the ability to randomize inputs. This will allow

the developers to run a multitude of configurations to test the code base. Our last requirement is

to have all inputs from the KBase GUI available. In order for our program to function exactly like

KBase’s version we must offer all the same input parameters in our program.

Non-Functional Requirements:
Our project has a few non-functional requirements that revolve around the system health

and overall experience of KBase. Firstly, we must ensure that no noticeable KBase traffic flow

disruption occurs so that other KBase users do not experience performance issues. Our

application has the potential to create thousands of job narratives running concurrently. This has

the potential to disrupt the daily work flow of the Kbase system and this is something we want to

avoid. Secondly, The app GUI should have a similar layout as KBase GUI so that navigation will

appear seamless and not foreign to its users.These are the only non-functional requirements we

have identified in our project.

Environmental Requirements:
Our project also has a few system environment requirements. For starters, All users

need a valid and active KBase account to use KBase. The users of the system must have

access to a KBase account to successfully run our application. This will help us keep our

application protected from potential malicious users. Another requirement we have is, Users’

devices must be able to support and run Selenium inorder to interface with KBase apps. The

application is built on top of Selenium, so the users system must support selenium. Lastly, A

network connection is required.

Standards Used:
Our project follows a few popular IEEE standards in order to ensure we follow industry

standards in some key areas. The standards that we follow are listed below along with a short

description of each. We applied each of these standards to maintain consistency in aspects of

our development/testing processes. Another reason for following these standards is to help

ensure our project is of the highest quality. Lastly, we followed these standards to gain some

relevant experience that we can apply to our post academic careers.

1.IEEE 12207-2017 - ISO/IEC International Standard - Information Technology - Software Life

Cycle Processes

This standard holds the purpose of defining a lifecycle standard for software projects from

design, development, deployment, testing, and acquisition standpoints. The standard can be

9

used as a base for software projects at any point during their lifecycle. It defines specific stages

of the lifecycle that can adhere to the standard.

2. IEEE 1028-2008 - IEEE Standard for Software Reviews and Audits

This standard defines five different types of software reviews and audits that can be used in

combination to increase the quality of software projects at various stages of their lifecycle. The

standard serves to provide a systematic guideline of how to review projects, carry out reviews,

and use the results of the reviews.

3. IEEE 2430-2019 - IEEE Trial-Use Standard for Software Non-Functional Sizing

Measurements

This standard defines how to size nonfunctional requirements in software. This means how to

determine time/cost estimates for requirements that are non-functional in nature, such as user

interface design, latency, and technical tools used in the project. The goal is to enable users to

be able to more effectively be able to determine estimates of non-functional requirements.

Engineering Constraints:
The biggest constraints that we had was that we were required to automate the inputs of

the Kbase gui through a web browser. This prevented us from using any tools provided by

Kbase such as a SDK or an API. This constraint is what led us to using selenium, so that we

could interact with the user interface directly. This lead to another constraint, because selenium

uses the html page of the site that we are trying to automate if that html page changes then it

could cause our whole system to fail therefore we had to make sure that are implementation

was flexible enough so that any changes to the Kbase web site could be easily accounted for

and make the appropriate changes. Finally the last constraint that we had was that it must be

possible for future teams and independent individuals to be able to make their own contributions

to this project once the semester is done. To solve this we are hosting the project on git to make

the transfer of the project easy and we are following object oriented principles so that additions

to the project will be easy.

Operational Environment:
The end product is expected to be run and available constantly to any KBase users. The

environment the software application runs in will be the user's own system. Our application will

be downloaded by each KBase user on their own machines. Our application is purely software

therefore the environment is limited to the user's system. The only hazard that our project could

encounter is no internet connection for the user. Our application needs an internet connection to

operate. This environmental hazard is out primarily out of our control as developers.

10

Security Concerns/Countermeasures:
Our project is unique in that it is simply augmenting an existing solution for users. Rather

than producing a standalone service which is accessed by users, we’ve produced a solution

which augments the user’s own abilities on their behalf. As a result of this configuration, we’ve

identified one particular security concern for our project. In order to perform actions on our

user’s behalf, we require they provide their credentials as part of an authentication flow in our

application. These credentials are simply used for Globus authentication prior to automation of a

narrative within KBase itself. This is a security concern because if our application was somehow

compromised (e.g. the distribution pipeline), the attacker would be able to gain access to our

users’ passwords. To mitigate this, we have provisioned a specific user account in Globus for

automation and testing, and have additionally moved password configuration to a flat file which

the user owns and can manage.

Implementation Details:
Our project was designed early-on with a core architecture which allows us to extend the

system easily. This core architecture decouples automation of the KBase narrative from

particular parameter sets, their origin, or the export format. In summary, we collect parameters

from the user either via a graphical user interface or a file which is imported through the

interface. Once we’ve loaded the parameters, we will apply any randomization specified by the

user and create a Job for that particular parameter set. Once a Job is instantiated, that job is

queued with a JobManager whose responsibility is to assign jobs to runners. A runner handles

automation of KBase narratives by being assigned Jobs, programming KBase’s parameters

from that Job, executing the simulation, and scraping the results of that simulation and storing

them within the Job. Once complete, a job can be exported to the file system where the user

has the opportunity to perform further analysis. The most difficult aspect of this architecture is

the runner’s automation. We have to navigate through a series of complex flows to authenticate

the user, open the narrative, reset a narrative application, program the application, execute the

application, and collect results from the application. Each of those steps may involve a series of

actions which are reactive to behaviors from KBase itself. Thanks to our architecture, however,

we have been able to develop the automation code in-parallel and extend the system to

accommodate new features and enhancements.

11

Testing:
Unit Testing:

The first type of testing that our team performed was unit tests. We perform unit tests on

our data inputs, selenium runners and data outputs. For instance, once a job has had its

parameters set, it’s handed off to a selenium runner for execution. Our Selenium runner will

move through several phases as it configures the KBase interface, executes the job, and

collects results from the Flux Balance Analysis’s output. These individual steps may be tested in

isolation through unit tests to validate that the correct actions are being performed in KBase

through the Selenium API, and that the output collected from the application’s DOM is being

correctly instantiated into an output data structure for later processing. In order to continue to

run all of the unit tests we created a continuous integration pipeline that would automatically run

all of the tests that we have written. We did this by using the maven test command that will run

all of the test files that are in the project upon a build.

Interface Testing:
Another type of testing that our group did was interface testing. Currently, our interface

testing is all done manually and is not extensive. Our interface changes periodically and is

minimalistic so our team has decided that interface testing would not be as beneficial as other

types of testing. In the future, some broad interface testing that is automated by Selenium. Our

most frequent type of testing is our acceptance testing.

Acceptance Testing:
Our accepting testing is mostly manual performance tests that are performed by our

team while working on the project. This means that each of the team members are responsible

for manually testing the code that they plan to implement to ensure that it works in accordance

with project requirements. In addition, the people who review the pull request of any given team

member should make sure that the code works either by asking the team member who created

the pull request or by manual testing that the code works themselves. Lastly we demo the

project every two weeks to our client so that they can assess the project and determine if it

meets their requirements.

Testing Results:
The results of our implemented testing strategy allowed us to catch most of the errors that were

created by our software before making it into the main branch. This provided the user with a

better experience and exceeded the expectations of the client.

12

References
IEEE SA - The IEEE Standards Association - Home, IEEE Standards Association,

standards.ieee.org/.

Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The

United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology.

2018;36: 566. doi: 10.1038/nbt.4163

Appendices

Appendix I - Operation Manual
The application is highly configurable and may be run in different modes as desired. The

application is bundled into releases in the form of JAR files. These files may be run, according

to the user’s operating system. Typically this means double-clicking the JAR file.

FBA Application jobs can be configured through a GUI, using a configuration file or by

manually setting the variables, or through the command line via a configuration file. The

configuration files can be used to queue multiple jobs from a single file.

- Running the application GUI

To run the application from the GUI, double click on the bundled JAR file. This will open a new

window. This window will allow the user to configure the application through the use of a

configuration file, or manually setting values to be programmed into KBase.

13

Optionally, “Read from file” may be checked to allow the user to select a file on their machine to

program variables to KBase, instead of programming the input boxes manually.

14

The application will run according to the configuration given to the job, and output the results

from the application to a file.

- Running the application from the command line

15

Alternatively, the application may be run from the command line. This gives the user greater

configurability, opening up the option to run Selenium drivers from Docker containers. The

benefit of running the application from the command line is that it can be scripted, allowing tests

to be run in an automated environment. In addition, utilizing a Docker container allows the tests

to be run without being coupled to the browser and version on the user’s machine. Docker

containers containing specific browser versions can be configured for use via the command line.

Pull the docker container that holds the desired browser and version.

docker pull selenium/standalone-chrome:88.0

See SeleniumHQ/docker-selenium for available browser images.

Start the docker container hosting the webdriver

docker run -d -p 4444:4444 --shm-size 2g selenium/standalone-chrome:88.0

Run the application pointing at the docker container as a remote web driver.

java -jar senior-design-sdmay21-26.jar -f "path/to/inputFile" -c

"path/to/configFile" -r "http://localhost:4444/wd/hub"

Appendix II - Alternative Versions of the Design
Our team largely benefited from the fact that our advisor was also our client. We met

weekly to hammer out any design details that we may not have interpreted fully. We also

16

https://github.com/SeleniumHQ/docker-selenium

benefited from the scope and idea of our project being largely fleshed out before we had to

undertake it. Our advisor suggested that we use selenium to operate on top of the KBase

platform. We were given a bit of freedom with the tool we ended up using, but once we saw how

easy it was to interact with KBase using Selenium it was a clear cut choice. Thankfully, for the

team we decided on a job/runner structure for running input values from our application ran

through Selenium to the KBase interface and then eventually back again. We never wavered

from this design decision simply because it worked and it was efficient. Our application was

simple in theory. Create a program that interfaces with an external GUI/File reader and send

that input data to Selenium which interacts with the KBase interface. Then get the return data

and highlight values of importance. The job/runner structure was perfect for this and allowed us

to easily implement concurrency with a job queue. Due to this, we never had to change our

initial design; we simply had to change some features where necessary. Initially, we were

unsure what direction the project would take design wise, but we benefited a lot from our

advisor doubling as our client. Running an agile development methodology we got to demo our

progress every two weeks causing constant and consistent feedback from our client/advisor. I

believe this also played into us never making any large design changes. Another reason our

design didn’t change was due to our project being well defined and the core specifications

stayed concrete. At its core the project did not change at all, we needed to craft a third party tool

to automatically interface with KBase to run tests concurrently while gathering and flagging

appropriate output. We only added onto this concept and added additional helpful features such

as: command line interactions, reading from files, completely randomized samplings, manually

configured base samplings, and self garbage collection to name a few. The implementation of

some of these features may have changed due to a better understanding of the benefits. For

example, we wanted a way to automatically perform base samplings. The feature was

implemented and demonstrated, but was not a hundred percent representative of base

sampling. In the end we had to trade the feature for a manual base sampling tool, but this is a

good example of a time one of our features changed. To conclude, our design never changed

from the initial version. Thanks to our advisor/clients' good direction and well fleshed out idea.

Our weekly meetings and biweekly demonstrations gave us plenty of feedback and allowed us

to continue to pursue the job/runner design style. Our clients specifications for the project were

immutable and gave us a good idea of our objective. We benefitted largely from the project's

overall specifications not changing throughout the year. New feature ideas were presented by

our advisor/client, but our initial design allowed these to be seamlessly built on top of existing

code without affecting our systems design. We did not consider any other designs that are

17

significantly different than our current/initial design. Our advisor had the idea, we chose a design

style that fit that narrative, and we executed that plan while maintaining and making additions as

new features were presented. We did not make any design decisions until we fully understood

the project and our requirements. Our design met all the requirements and specifications for the

project resulting in not needing to change from our initial design. As a result of all the points

previously discussed, our initial design proved to be our best design. Resulting in it becoming

our final design.

Appendix III - Other Considerations
Our project being built on top of an existing interface presented some slight risks. The

KBase interface is a very stable one that has not undergone many changes since its inception.

The interface started on version 1 and per our advisor this interface has not changed in a long

time. This gave us some confidence that our selenium driver would be fine to be hardcoded.

Little did we know that the day before our advisor sprint demo KBase rolled out a version two of

the interface changing most of the interface. Our selenium was no longer running correctly as it

was not grabbing the correct web elements. This shut down our development for about ten days

as we tried to get back online. Our fix made everything a lot more modularized this way if the

KBase interface changes again we only need to make slight changes to our end to successfully

transition. From this we learned that relying on interfaces or anything in general to not change is

not a dependable strategy. We must make a plan and craft flexible code in order to better

endure these changes. If our client wants a specific software that is built on top of something we

have no control over then this would be the way to go. Modularize everything you can to make

changes smoother.

The entire team learned a lot throughout this year-long endeavor. For starters, we kept

up with an agile two week sprint cycle. This taught the team how to work together using one of

the most popular development methodologies. This gave us all good experience to take into the

workforce. This project also gave everyone a chance to learn new API’s and work on facets that

they wanted to. The core implementation was done in the first semester giving us a full

semester to add additional features. The team got to explore facets that interested them while

adding features to the project. Whether the members wanted to work on UI, dockerizing,

working with Selenium there were plenty of opportunities to explore paths and improve specific

skill sets. The team also gained valuable experience working with a real client and speaking

with real users. We had an hour long meeting with KBase developers/users and highlighted the

benefits of our application to them. This meeting was very beneficial to the team as we spoke to

18

and got feedback from other users other than our main client. While we learned many things this

past year, I think the most important thing was how to successfully work within a small team. We

had to work closely together to ensure we were prepared for our biweekly sprints. This

experience will be very useful as we all move forward professionally.

19

